Overview

A flexible suite of solvers for time integration and solution of large-scale nonlinear systems of ordinary differential, differential/algebraic, and partial differential equations, including optional solves for sensitivities with respect to model parameters

- Adaptive time integrators and solvers
 - ODEs, y'=f(t, y, p), CVODE
 - DAEs, F(t, y', y, p) = 0, IDA
 - Algebraic systems, F(y, p) = 0, KINSOL
- Builds on LLNL history of general purpose software packages
 - Among the most widely used solvers for these problems (ODEPACK, VODE)
- Data structure neutral approach
 - Allows users to supply their own data structures for kernel operations
- Time integration is variable order, variable step size
 - BDF up to order 5 (for stiff systems & DAEs)
 - Adams (for nonstiff ODEs)
- Nonlinear systems solved by inexact Newton method
- Linear solvers provided
 - GMRES
 - Direct (dense and banded)
 - Interfaces for user-supplied linear solvers and preconditioners

Sensitivity Analysis

Quantitative measure of how the variation in the output of a model can be apportioned to different sources of variation in the input. Sensitivity results can be used in model evaluation, model reduction, data assimilation, uncertainty quantification, and optimization

• Forward sensitivity approach

- Most effective for computing sensitivities with respect to a few parameters
- Based on integrating so-called sensitivity equations in tandem with the original system
- Implementation approaches
 - Simultaneous corrector
 - Staggered corrector
- · Adjoint sensitivity approach
 - Most effective when computing gradients of a few derived functionals with respect to any number of parameters
 - Based on integrating the adjoint system backwards in time
- Implementation
 - Check-pointing
 - Cubic Hermite interpolation

Package Structure

Forward Sensitivity Simulation **Adjoint Sensitivity** User main ensitivity computati User problem-defining function User problem-defining function User problem-defining function reverse function CVODE IDA KINSOL CVODES IDAS KINSOLS ¥ Dense Linear Linear GMRES conditione

User Interface

- Users can supply their own data structures underneath SUNDIALS
- Implementation of vector module must include
 - Content of a vector environ
 - Implementations of vector operations (dot products, norms, scalings)
 - Routines to construct the environment and attach the list of operation
- SUNDIALS provides default serial and parallel vector implementations
- Users supply the problem-defining function, F or f.
- Users can supply their own preconditioner set-up and

Applications

Uncertainty quantification for groundwater simulation

Variably saturated flow model Study relative importance of parameters in relative permeability

First order uncertainty, based on sensitivities computed with the forward approach, is color-coded

SensKINSOL

Sensitivity analysis in a population

Six-species predator-prey model with reaction and diffusion

Study influence of ICs on average population Height represents IC for species 1 Sensitivities, computed with the adjoint approach, are color-coded CVODES

Sensitivity analysis in neutral particle

Time-dependent, 3-energy group Boltzmann transport model
Study influence of cross section parameters on

solution

Solution is color-coded Sensitivity is coded through transparency SensIDA

The SUNDIALS Team

Peter Brown Radu Serban **Keith Grant Dan Shumaker Carol Woodward Alan Hindmarsh** Steven Lee

With contributions by Scott Cohen and Allan Taylor

Download

http://www.llnl.gov/CASC/sundials **Publications**

http://www.llnl.gov/CASC/nsde/pubs.html

